Hanting Chen1,2, Yunhe Wang2*, Tianyu Guo1,2, Chang Xu3, Yiping Deng4,
Zhenhua Liu2,5,6, Siwei Ma5,6, Chunjing Xu2, Chao Xu1, Wen Gao5,6
1 Key Lab of Machine Perception (MOE), Dept. of Machine Intelligence, Peking University. 2 Noah’s Ark Lab, Huawei Technologies.
3 School of Computer Science, Faculty of Engineering, The University of Sydney. 4 Central Software Institution, Huawei Technologies.
5 Institute of Digital Media, School of Electronic Engineering and Computer Science, Peking University. 6 Peng Cheng Laboratory.
Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for contrastive learning of visual representations. arXiv preprint arXiv:2002.05709, 2020.
“Impact comes from diverse areas”とはつまり、何か単一のことをやれば十分な性能が出るということはなく、このシステムではデータセットの改善、モデルの改善、システムインフラ面の改善など様々な改善ポイントがあるということで、確かに機械学習システムの実運用を行っているとモデル改善以外にも山ほどやるべきことがあるのがわかる。
タイトルの通り、機械学習パイプラインのデバッグを行うツールを開発した論文「Debugging Machine Learning Pipelines」を読んだ。 International Workshop on Data Management for End-to-End Machine Learning というワークショップで発表されている。