ナビゲーションへスキップ コンテンツへスキップ

10001 ideas

Studying Data Science

  • 機械学習
  • 書評
  • programming
メインナビゲーション

月: 2017年10月

「Machine Learning – A Probabilistic Perspective」第4章を読んだ

前回(「Machine Learning – A Probabilistic Perspective」第3章を読んだ。)の続き。 4章は多変数ガウシアンモデルについて。この章は数学的に他の章よりも難しいと、一番初めに書か […]

2017年10月31日By Hiroshi 一人読書会, 機械学習コメントする

「Machine Learning – A Probabilistic Perspective」第3章を読んだ

前回の続き。「Machine Learning – A Probabilistic Perspective」第3章を読みました。 第三章の目次は以下の通り。この章は、離散データをもとにナイーブベイズなどの手法でモデルを生 […]

2017年10月16日By Hiroshi 一人読書会, 機械学習コメントする

「Machine Learning – A Probabilistic Perspective」第2章を読んだ

前回の続き。 2章は確率論の復習です。一通り、確率は習っているのでスムーズに進めました。確率分布の性質などの部分は後から出てきたときに見返せば良いかなという感じです。 最後に情報理論の節があります。データの分布の相関を測 […]

2017年10月4日By Hiroshi 一人読書会, 機械学習コメントする
最近の投稿
  • ChatGPTの技術を活用して、プレゼンを自動で作るSlidesGPT
  • ChatGPTはプログラマの夢を見るか
  • 【論文読み】Point Transformer
  • 【論文読み】Pre-Trained Image Processing Transformer
  • 『5G 大容量・低遅延・他接続のしくみ』を読んだ
人気記事
  • Batch Normalization と Dropout は併用しない方が良いという話
  • 時系列クラスタリングの研究サーベイ論文を読んだ
  • Kerasで転移学習をする際にはpreprocess_input()を呼ぼう
  • RNNのDropoutはどこに入れるべきか?:Where to Apply Dropout in Recurrent Neural Networks for Handwriting Recognition?
  • Kaggleで人気 XGBoostの論文 「XGBoost: A Scalable Tree Boosting System」を読んだ
  • 大規模データのクラスタリングには Mini Batch K-Means を使うべきという話
  • Windowsで英文形態素解析ツールTreeTaggerを使う
  • 外れ値処理の一手法:Winsorizingについて
  • CNNによるセグメンテーション論文:「U-Net Convolutional Networks for Biomedical Image Segmentation」を読んだ
  • 特徴量エンジニアリングに焦点を当てた簡潔な本:「Feature Engineering for Machine Learning」
アーカイブ
  • 2023年4月
  • 2021年1月
  • 2020年11月
  • 2020年10月
  • 2020年3月
  • 2020年2月
  • 2019年12月
  • 2019年11月
  • 2019年9月
  • 2019年8月
  • 2019年7月
  • 2019年5月
  • 2019年4月
  • 2019年3月
  • 2018年12月
  • 2018年10月
  • 2018年9月
  • 2018年8月
  • 2018年7月
  • 2018年6月
  • 2018年5月
  • 2018年4月
  • 2018年3月
  • 2018年2月
  • 2018年1月
  • 2017年12月
  • 2017年11月
  • 2017年10月
  • 2017年9月
  • 2017年8月
  • 2017年7月
  • 2017年6月
  • 2017年3月
  • 2016年1月
  • 2015年11月
  • 2013年12月
  • 2013年8月
  • 2013年6月
  • 2013年4月
  • 2013年1月
  • 2012年6月
  • 2012年2月
  • 2012年1月
  • 2011年8月
  • 2011年6月
  • 2010年12月
  • 2010年11月
  • 2010年8月
  • 2010年2月
カテゴリー
  • [Machine Learning][paper]
  • C++
  • DeepLearning
  • emacs
  • firefox
  • KDD2018
  • KDD2019
  • Keras
  • MOOC
  • opencv
  • podcast
  • programming
  • python
  • ruby
  • Rust
  • scheme
  • ubuntu
  • データサイエンス
  • テクノロジー
  • ネタ
  • ハードウェア
  • 一人読書会
  • 数学
  • 書評
  • 未分類
  • 機械学習
  • 論文
© 10001 ideas 2023 • ThemeCountry Powered by WordPress