特徴量エンジニアリングに焦点を当てた簡潔な本:「Feature Engineering for Machine Learning」

機械学習の特徴量エンジニアリングに焦点を当てた本、「Feature Engineering for Machine Learning」を読んだ。

テーブルデータ、画像データ、文章データなどの各種データに対しての基本的な特徴量エンジニアリング手法が網羅されている本でした。例えばone-hotエンコーディングやn-gram、SIFTなどなど基本的な手法から、Box-Cox変換、Dummy Coding、データリークの問題など、一般的な機械学習の入門書ではカバーされないような内容もところどころ書かれていた。

後半ではCNNの仕組みや、論文推薦システムの構築などの、特徴量エンジニアリングを利用した実アプリケーションの作成もチュートリアル的に示されており、特徴量を加えることで精度が大きく変わるところなども分かり、特徴量エンジニアリングの重要性が学べる本となっていた。

全部で200ページほどの結構薄い本なので、英語の技術書に挑戦してみようかな、という人には機械学習の基礎が出来ているのであれば分かりやすいかと思うのでオススメしたい。

ニューラルネットワークを利用した決定木:Deep Neural Decision Trees

引き続き、機械学習の解釈性についての論文を読んだ。今回読んだのは、「Deep Neural Decision Trees (WHI ’18)」。著者による実装のページはここ

決定木とニューラルネットワークを用いる他の論文などと同様に、決定木の解釈性とニューラルネットワークの精度の高さの両立を狙っている。特に表形式データの分類に有効と著者らは述べている。

この論文では、微分可能なsoft binningという関数を入力データにかませて、学習を重ねることでsoft binningのバイアス項の値を見ることで、各フィーチャーに対してどこで決定木を分岐すれば良いかが分かるという手法を提案している。soft binningで決定木の分岐を表現して、そのあとにクロネッカー積を取ることですべての分岐の組み合わせを網羅的に調べることが出来る。すべての層は微分可能なため、通常のバックプロパゲーションによりネットワークの学習を行うことが出来る。

著者らは複数の表形式データセットに対して、決定木、ニューラルネットワーク、Deep Neural Decision Tree、の三手法で精度評価を行っている。結果はデータセットによってまちまちだが、基本的にニューラルネットワークと同等程度の精度が出ている。実験の結果、DNDTでは全く推論に使われない特徴が検出できるなどの副次的な成果も述べられている。

GPUによる速度性能の確認も行われており、フィーチャー数が増えた場合でもCPUと比較して、あまり実行時間が増えないようになっている。

今後も機械学習の解釈性関連の論文を色々と読んでいく予定。

GPSデータによる交通事故リスク予測:Learning Deep Representation from Big and Heterogeneous Data for Traffic Accident Inference

読んだ論文のメモ。Learning Deep Representation from Big and Heterogeneous Data for Traffic Accident Inference (AAAI ’06)という論文を読んだ。

内容はGPSデータから交通事故のリスクレベルを予測するというもの。GPSデータには東京のデータが用いられている。GPSデータは精度自体やビルの陰や建物の中にいるなどの理由でノイズが乗っていると考えられる。この研究ではauto encoderを利用してGPSデータからノイズ除去を行ってからロジスティクス回帰に入力して事故リスクの予測をしている。

実験では、単純な決定木・ロジスティクス回帰・SVMと提案手法を比較して、提案手法がリスクレベルをよく予測出来ていることを確認している。また、主観評価として夜になると事故リスクがさがる、昼間は都心部の事故リスクが高い、東京・横浜間の道路が他に比べて事故リスクが高い、など我々の感覚に近い結果が出ていることも確認している。

スマートフォンの普及によりGPSデータは簡単に取得できるようになっているため、こういったタイプの研究やアプリケーションは今後増えていくだろうと考えられる。

 

機械学習によるメモリアクセス予測:Learning Memory Access Patterns

ICML 2018の論文リストを眺めていて、目についたタイトルの論文を読み始めた。まず最初に「Learning Memory Access Patterns」という論文を読んだ。この論文はRNNを用いてメモリアクセスパターンを予測することで、プリフェッチの精度を上げてパフォーマンス向上を目的としている。ある種の調査によると、CPUサイクルの50%以上はメモリからのデータを待っているともいわれており、プリフェッチの精度を上げることはコンピュータの性能向上に寄与する可能性が高い。

アイデアとしては、メモリアドレス空間をvocabralyとして扱う。これは、アドレス空間は非常に広大だが、実際にプロセスによってアクセスされる個所は局所的であり、これを予測しようとすると非常に疎なデータであるため正規化した際に有用な情報が失われてしまうためである。また、現在アクセスされているアドレスと次の時間にアクセスされるアドレスの差分(デルタ)を正解ラベルとして用いることで、デルタは通常小さいため、訓練が上手くいくというアイデアが用いられている。

また、単純にLSTMを使うだけでなく、前処理としてクラスタリングを行ってからLSTMにかけることで、プログラムのローカル構造(例えば構造体のアクセスや配列の走査)などの特徴を掴みやすくなったと述べている。

著者らは様々なデータセットを用いて、既存のメモリプリフェッチ機構とprecision/recallを比較しているが、クラスタリング+LSTMが良い性能が出ることを確認している。

Hit/Missの性能が良いのは理解できなくもないが、気になるのはやはり速度性能である。これは推測だが、おそらく既存のメモリプリフェッチ機構を置き換えるにはLSTMの推論は処理が重いのではないかという気がする。著者らは実際にH/W実装はまだ行っておらず、速度性能については今後の課題だと述べている。今後TPUのようなAIプロセッサの技術革新が進んでいけば、将来的には既存のプリフェッチ機構を置き換える可能性を秘めているかもしれない。

論文では、以前話題になったB-treeよりも高速なインデックス構造を機械学習で作成した「The Case for Learned Index Structures」という論文があったが、今後は既存のコンピュータアーキテクチャ分野にも機械学習が進出する未来がやってくるのかもしれない。