前回(「Machine Learning – A Probabilistic Perspective」第3章を読んだ。)の続き。 4章は多変数ガウシアンモデルについて。この章は数学的に他の章よりも難しいと、一番初めに書か […]
月: 2017年10月
「Machine Learning – A Probabilistic Perspective」第3章を読んだ
前回の続き。「Machine Learning – A Probabilistic Perspective」第3章を読みました。 第三章の目次は以下の通り。この章は、離散データをもとにナイーブベイズなどの手法でモデルを生 […]
「Machine Learning – A Probabilistic Perspective」第2章を読んだ
前回の続き。 2章は確率論の復習です。一通り、確率は習っているのでスムーズに進めました。確率分布の性質などの部分は後から出てきたときに見返せば良いかなという感じです。 最後に情報理論の節があります。データの分布の相関を測 […]