“Impact comes from diverse areas”とはつまり、何か単一のことをやれば十分な性能が出るということはなく、このシステムではデータセットの改善、モデルの改善、システムインフラ面の改善など様々な改善ポイントがあるということで、確かに機械学習システムの実運用を行っているとモデル改善以外にも山ほどやるべきことがあるのがわかる。
タイトルの通り、機械学習パイプラインのデバッグを行うツールを開発した論文「Debugging Machine Learning Pipelines」を読んだ。 International Workshop on Data Management for End-to-End Machine Learning というワークショップで発表されている。
具体的なアルゴリズムとしては、元文書とAdversarial Exampleのノルムを閾値以下である・Watermarkの中に含まれるピクセルをのみを変更する、という制約の下でCTC loss functionと呼ばれる最終層で出力される値から正解のデータ列になりうる確率を元に計算する損失関数を最小化するように最適化問題を解いていく。論文では、再急降下法+モーメンタムのようにして文書ベクトルを更新していくと述べられている。
Squeeze: 各特徴マップはフィルタがかけられた局所的な部分の情報の集まりであり、大局的な情報を持っていない。そのためSqueeze処理でチャネルごとの統計情報を取得する。具体的にはGlobal Average Poolingをかける。もっと複雑な処理を使っても良いかもしれないと著者らは述べている。
SEブロックの役割を現実的なレベルで理解するための考察が述べられている。Global Average Poolingを行わないNoSqueezeというモジュールを構成し、精度を見るとSEブロックよりも下がる。これはSEブロックが特徴マップ全体の情報を活用していることを示している。また、Excitationの理解のために、ImageNetの異なるクラスの画像に対して特徴マップが各層でどのように反応しているかを見ている。