機械学習の解釈性とパフォーマンスの両立を目指して:Human-in-the-Loop Interpretability Prior

機械学習、特にニューラルネットワークなどのアルゴリズムを使った場合、出力された結果は何万・何十万次元のベクトル演算の結果であり、人間が直接解釈することは難しい。ニューラルネットワークの解釈性については近年様々な研究が行わ […]