ICML 2018の論文リストを眺めていて、目についたタイトルの論文を読み始めた。まず最初に「Learning Memory Access Patterns」という論文を読んだ。この論文はRNNを用いてメモリアクセスパタ […]
カテゴリー: 機械学習
機械学習の解釈性とパフォーマンスの両立を目指して:Human-in-the-Loop Interpretability Prior
機械学習、特にニューラルネットワークなどのアルゴリズムを使った場合、出力された結果は何万・何十万次元のベクトル演算の結果であり、人間が直接解釈することは難しい。ニューラルネットワークの解釈性については近年様々な研究が行わ […]
大規模データのクラスタリングには Mini Batch K-Means を使うべきという話
タイトルの通りですが、大規模データをクラスタリングする際には単純なK-Means法ではなく、Mini Batch K-Means法を使うべきという話です。 とある大規模データ(150万件ほどの文章ベクトル)をクラスタリン […]
RNNのDropoutはどこに入れるべきか?:Where to Apply Dropout in Recurrent Neural Networks for Handwriting Recognition?
タイトルの通り、RNNに対してDropout層を追加する場合、どこに入れるのが適切なのか?と思い少し調べてみました。 ことの発端は、KerasにあるLSTMとGRUの、GPUによる高速化版であるCuDNNLSTMとCuD […]
Kerasの作者が書いたDeep Learning解説本:「Deep Learning with Python」を読んだ
タイトルの通り、広く使われているディープラーニングフレームワークであるKerasの作者François Chollet氏によるDeep Learningを解説した本「Deep Learning with Python」を […]
CNNによる価格予測の論文:「The Price is Right: Predicting Prices with Product Images」を読んだ
タイトルの通り、CNNモデルを利用して、自動車・自転車の画像から価格を予測する論文、「The Price is Right: Predicting Prices with Product Images」を読んだ。 この論 […]
CNNによるセグメンテーション論文:「U-Net Convolutional Networks for Biomedical Image Segmentation」を読んだ
タイトルの通り、CNNを用いて医療画像をセグメンテーションするU-Netというネットワーク構造の論文を読んだ。 2015年に発表されたネットワーク構造だが、その後セグメンテーションでは古典的な内容になっており、いくつか発 […]
Pythonでデータ整形まわりをまとめた本:「Python for Data Analysis (第2版)」を読んだ
最近、Pythonを使って機械学習を勉強しているがnumpyやpandas, グラフ作成辺りの体系的な知識が足りない気がしていたので、この辺りをまとめた本「Python for Data Analysis (第2版)」を […]
有害コメント検出の論文:「Comment Abuse Classification with Deep Learning」を読んだ
有害コメント検出の論文:「Comment Abuse Classification with Deep Learning」を読んだ。 https://web.stanford.edu/class/cs224n/repor […]
Kaggleで人気 XGBoostの論文 「XGBoost: A Scalable Tree Boosting System」を読んだ
タイトルの通りなんですが、Kaggleでとても人気のある手法のXGBoostがどういった仕組みで動いているのかを知るために次の論文を読みました。 XGBoost: A Scalable Tree Boosting Sys […]