タイトルの通り、最近目にすることが多くなったPyTorchを学ぶために「PyTorchで始める深層学習」という本を読んだ。本当に深層学習を全く触ったことが無いという人が、PyTorchで始めるには良いのかもしれないが、あ […]
カテゴリー: DeepLearning
直感 Deep Learning
「直感 Deep Learning」という書籍が出るそうです。翻訳版なので原著を調べてみたところ、「Deep Learning with Keras」でした。英語版の方は、以前読んでおりレビューも書きました。この本はKe […]
特徴量エンジニアリングに焦点を当てた簡潔な本:「Feature Engineering for Machine Learning」
機械学習の特徴量エンジニアリングに焦点を当てた本、「Feature Engineering for Machine Learning」を読んだ。 テーブルデータ、画像データ、文章データなどの各種データに対しての基本的な特 […]
ニューラルネットワークを利用した決定木:Deep Neural Decision Trees
引き続き、機械学習の解釈性についての論文を読んだ。今回読んだのは、「Deep Neural Decision Trees (WHI ’18)」。著者による実装のページはここ。 決定木とニューラルネットワークを […]
GPSデータによる交通事故リスク予測:Learning Deep Representation from Big and Heterogeneous Data for Traffic Accident Inference
読んだ論文のメモ。Learning Deep Representation from Big and Heterogeneous Data for Traffic Accident Inference (AAAI  […]
機械学習によるメモリアクセス予測:Learning Memory Access Patterns
ICML 2018の論文リストを眺めていて、目についたタイトルの論文を読み始めた。まず最初に「Learning Memory Access Patterns」という論文を読んだ。この論文はRNNを用いてメモリアクセスパタ […]
機械学習の解釈性とパフォーマンスの両立を目指して:Human-in-the-Loop Interpretability Prior
機械学習、特にニューラルネットワークなどのアルゴリズムを使った場合、出力された結果は何万・何十万次元のベクトル演算の結果であり、人間が直接解釈することは難しい。ニューラルネットワークの解釈性については近年様々な研究が行わ […]
Kerasの作者が書いたDeep Learning解説本:「Deep Learning with Python」を読んだ
タイトルの通り、広く使われているディープラーニングフレームワークであるKerasの作者François Chollet氏によるDeep Learningを解説した本「Deep Learning with Python」を […]
CNNによる価格予測の論文:「The Price is Right: Predicting Prices with Product Images」を読んだ
タイトルの通り、CNNモデルを利用して、自動車・自転車の画像から価格を予測する論文、「The Price is Right: Predicting Prices with Product Images」を読んだ。 この論 […]
CNNによるセグメンテーション論文:「U-Net Convolutional Networks for Biomedical Image Segmentation」を読んだ
タイトルの通り、CNNを用いて医療画像をセグメンテーションするU-Netというネットワーク構造の論文を読んだ。 2015年に発表されたネットワーク構造だが、その後セグメンテーションでは古典的な内容になっており、いくつか発 […]